書評
一覧題 名じっくり学ぶ曲線と曲面
- 著者名
- 中内 伸光
- ISBN
- 9784320017887
- 出版年月日
- 2005年9月
- 出版社名
- 共立出版
- 価格
- 3,500+税
- 投稿日
- キーワード
- 数学
- 背景
- 著者は1983年、大阪大学大学院理学研究科修士課程修了。山口大学理学部数理科学科助教授。理学博士。
- 概要
本書は「微積分」と「ベクトル・行列」など基礎を学んだ人が「曲線と曲面の微分幾何学」をじっくり勉強するための教科書。標準的な内容で、独習書としても最適。基本的な題材を、わかりやすくていねいに解説する。
第0章 はじめに
第1章 平面曲線
1.1 基本的考察
1.2 正則曲線
1.3 弧長パラメーター
1.4 (平面曲線に対する)フルネ-セレの公式
1.5 曲率の幾何学的意味
1.6 平面曲線のまとめ
1.7 補足(飛ばしちゃってもよいけど,気になる人は読んでね)
1.8 演習問題第2章 空間曲線
2.1 正則曲線
2.2 弧長パラメーター
2.3 フルネ-セレの公式
2.4 空間曲線のまとめ
2.5 補足(飛ばしちゃってもよいけど,気になる人は読んでね)
2.6 演習問題ちょっと休憩:奇妙な曲線
第3章 曲面
3.1 正則曲面
3.2 法ベクトルとガウス写像
3.3 第1基本量
3.4 第2基本量
3.5 いろいろな曲率
3.6 ガウス,ワインガルテンの公式
3.7 ガウス,ワインガルテンの公式と可積分条件(←飛ばしてもOK)
3.8 驚異の”ガウスの基本定理”
3.9 曲面上の曲線
3.10 深遠な”ガウス-ボネの定理”
3.11 曲面のまとめ
3.12 演習問題ちょっと休憩:球面を裏返す
付録
補足
A.1 テイラー展開
A.2 ベクトルの外積
A.3 積分の平均値の定理
A.4 ガウス-グリーンの公式
A.5 常微分方程式の初期値問題の解の存在と可積分条件
A.6 偏微分方程式系の解の存在と可積分条件
A.7 逆写像定理
A.8 等温パラメーターの存在
A.9 曲面のオイラー数公式集
平面曲線
空間曲線
曲面数学の基本的な記号・用語のまとめ
ギリシャ文字の一覧表
思いつくままの参考図書
演習問題の略解
- 編集部より
- 図やイラストを多数収録し、理解の助けとなるよう工夫されている。おやじギャグも満載で、笑いながらしっかり勉強できる。
- 著者
- 中内 伸光